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Abstract.  Many studies have examined Keyfitz’s population momentum, a special case of inertia in long-term population size resulting from demographic transition to the stationary population growth rate.  Yet, population inertia can be produced by any demographic perturbation (i.e., not just perturbations that produce stationary growth).  Insight into applied population dynamics, population ecology, and life history evolution has been gained using perturbation analysis of the population growth rate.  However, a similar, generalized framework for perturbation analysis of population inertia has not been developed.  We derive general formulas for the sensitivity of population inertia to change in any vital rate or initial population structure.  These formulas are readily computable, and we provide examples of their potential use in life history and applied studies of populations.     
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1.  Introduction

Population size is central to the fields of demography and population biology.  Demographers often study population size because it can affect economies, policy, social dynamics, and even natural resource supplies (Bos et al., 1994; Fischer and Heilig, 1997; United Nations, 2003).  Biologists pay special attention to population size when trying to understand ecological processes, keep small populations from going extinct, controlling pest populations, and in management of populations that provide hunting, fishing, and viewing opportunities as well as world-market food resources (Caughley, 1977).  Additionally, the change in population size over time (i.e., population growth rate) describes the average fitness and performance of the population (Fisher, 1930; Sibly et al., 2002).  Thus, population size is an important parameter for many reasons.

In population modeling it is common to assume a stable population structure (i.e., the distribution of abundance across age, stage, size, sex, or other phenotypic categories) because it greatly simplifies study of how underlying vital rates, such as fecundity and survival, affect population size and growth.  Yet, if a population has an unstable population structure, such as an ‘over abundance’ of mature adults, it will experience transient dynamics (i.e., unstable short-term dynamics; Fox and Gurevitch, 2000; Koons et al., 2005; Yearsley, 2004).  Unstable population structure and transient dynamics can in turn create an inertial effect on long-term population size causing it to be larger or smaller than that of a population of the same initial size but with stable population structure and growing according to the same vital rates (Tuljapurkar and Lee, 1997).  The most commonly studied case of population inertia is Keyfitz’s heralded concept of population momentum (1971a), which pertains to the special case when a population’s vital rates undergo a change to the stationary level (i.e., the level of lifetime individual replacement) (see Fig. 1).                

Because population size can affect a variety of political, social, and economic issues, population momentum has been studied extensively in human demography and its effect has been shown to occur in many populations (e.g., Keyfitz, 1971a; Frauenthal, 1975; Mitra, 1976; Wachter, 1988; Schoen and Kim, 1991; Fischer and Heilig, 1997; Kim and Schoen, 1997; Schoen and Kim, 1998; Bongaarts and Bulatao, 1999; Li and Tuljapurkar, 1999, 2000; Schoen and Jonsson, 2003).  Through simulation, biologists have recently shown that population momentum could affect conservation efforts of declining wild populations and control of pest populations (Koons et al., 2006), that it varies with life history in a predictable pattern (Koons et al., In Press), and that it is an important aspect of optimal harvest theory (Hauser et al., In Review).    
Like population growth rate, population inertia is as relevant to population biology as it is to classical human demography, and tools that relate change in underlying demographic parameters to change in population inertia could benefit a variety of demographic disciplines.  The sensitivity of population growth rate to changes in underlying vital rates has a long history of use in demography and evolutionary theory (Lewontin 1965, Hamilton 1966, Demetrius 1969, Emlen 1970, Goodman 1971, Keyfitz 1971b, Mertz 1971), and Caswell’s (1978) discrete-time sensitivity formula has made calculation of this metric relatively simple for empiricists to use (e.g., van Groenendael et al., 1988; Horvitz et al., 1997; Benton and Grant, 1999; papers within Heppell et al., 2000).  Analogous analytical formulae for population inertia would be just as useful, but have not been developed.  Here, we present such formulae for the sensitivity of population inertia to changes in any vital rate or initial conditions.  We then show how these formulae can be used to examine dynamic underpinnings of population inertia across life histories, and in applied population analysis.  
2.  Derivation

2.1.  Population model and notation

We use bold-type capital letters to denote matrices and bold-type lower case letters to denote vectors.  We use 
[image: image1.wmf]x

 to denote the conjugate of x, xT to denote the transpose of the vector x and x* to denote the complex conjugate transpose.


Most studies of population inertia are conducted with continuous time models.  However, the underlying mechanisms of population inertia are more easily seen in discrete form (Schoen and Jonsson, 2003).  Thus, our derivation is based on a linear, discrete, time-invariant population model
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Here, 
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 is an n-dimensional vector with ith entry 
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 equal to the number of individuals in the ith stage at time t.  A is an n × n matrix with (i, j)-entry aij equal to the transition rate from the jth stage to the ith stage.  Alternatively, the population vector at any time t can be expressed as:  
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where the 
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’s are the eigenvalues of A (which we assume to be distinct), the 
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’s are corresponding right eigenvectors, and the ci’s depend on initial conditions and satisfy 
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 (Caswell, 2001).  The ith eigenvalue 
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Unless otherwise stated, we assume that A is primitive so that, according to the Perron-Frobenius theorem (Gantmacher, 1959; Seneta, 1981; Horn and Johnson, 1985), there is a unique eigenvalue of A having modulus strictly larger than the moduli of the other eigenvalues.  The indexing is chosen in such a way that 
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 is this “dominant” eigenvalue.  It is real and positive, and both 
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 have real positive entries.  For large t, the i = 1 term dominates the expression for 
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 given in equation 2, and so eventually, the population grows approximately geometrically at the rate 
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 eigenvectors describe the asymptotic population structure and reproductive values, respectively (Goodman, 1968).  Unless otherwise noted, we assume that the eigenvectors have been scaled so that 
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 is the ith component of x.  

2.2.  Measurement of population inertia
In a deterministic environment, population inertia is defined as the long-term size of a population growing at any rate as determined by the actual population structure, relative to the size of an otherwise equivalent population that grows according to its stable population structure (Fig. 1b).  In demography, this ratio is known as the Stable Equivalent Ratio (SER; sensu Tuljapurkar and Lee, 1997).  In order to relate various notions of population inertia and momentum that have appeared in the literature, we consider the quantity 


[image: image26.wmf]0

0

0

lim,

t

t

t

M

®¥

r

nr

rn


(5)

which we call the “inertia relative to 
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 as a point of reference and therefore call it the “reference vector”.  Since 
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one can see that 
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 is the asymptotic ratio of the size of the population with initial structure 
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 normalized to a unit vector to that with initial structure 
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Here, we assume that the eigenvalues of A are indexed in such a way that 
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 is nonzero for some i and we call the least such i the “height” of x.  Note that the height of x is also the least index i for which 
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In Appendix 1, we establish that
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provided 
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 for i > h, where h is the lesser of the height of 
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 (or the common value if they are the same).  The fraction is interpreted as being infinity if the denominator is zero.

Now we consider various special cases of 
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 for some positive real number c.  Since, equation 5 gives, in this case, the Stable Equivalent Ratio (SER) described above, we set 
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.  From remarks above, we see that this quantity does not depend on c.  Because 
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(noting that the absolute value signs can be dropped since the vectors on the right are all real and nonnegative).  If we further assume that 
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 is of the same size as 
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which is consistent with equation 7 in Tuljapurkar and Lee (1997).  
Next, by replacing 
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where e is the vector with each entry equal to one.  This formula is the same as Caswell’s discrete-time formula for population momentum (Caswell, 2001:104).  Caswell considers momentum resulting from instantaneous demographic changes to the stationary level, that is, where 
[image: image59.wmf] 1

1

l

=

.  In this case, 
[image: image60.wmf]10

t

c

==

rwr

 for all t so equation 5 gives


[image: image61.wmf](

)

 1

0

SERlim  assuming 1,

t

K

t

l

®¥

==

n

n


(11)

which is equivalent to Keyfitz’s (1971a) general definition of population momentum (hence the subscript K on SER).  This, in turn, is a special case of population inertia (Schoen and Kim, 1991; Tuljapurkar and Lee, 1997; Schoen and Jonsson, 2003; Keyfitz and Caswell, 2005).  Caswell derives equation 10 from equation 11 making use of the assumption 
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Lastly, if the initial vector 
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(we momentarily relax the assumption that A is primitive to allow for this possibility), then the SER is zero and all that can be concluded is that the size of the population will become increasingly less significant as compared to that of a stable population growing at rate 
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.  However, the population might still be viable with, say, its structure vector approaching an eigenvector for a subdominant eigenvalue.  In this case, the SER can be regarded as being too coarse a measure to distinguish between this population and one that, for instance, is moving toward extinction, which would also clearly have zero SER.  We get a more refined view of inertial effects by choosing various reference vectors 
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This inertia 
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) and it gives the asymptotic size of the given population relative to the size of a stable population growing at the subdominant rate 
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.  In the remainder of this paper we focus on the SER and leave further investigation of this more general notion of inertia to future work. 
The SER in equations 9 and 10 can be used to measure inertia in population size caused by an initially unstable population structure, or inertia resulting from instantaneous change in any vital rate to a new level (i.e., a ‘demographic transition’).  For example, 
[image: image74.wmf]0

n

 can represent the initial population structure or it can represent the population structure produced by a historical set of vital rates.  Of course, following a ‘demographic transition’,
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 would refer to the post-transition set of vital rates.  Henceforth, we use the terms ‘population inertia’ and SER interchangeably.
2.3.  General formulas for the sensitivity of population inertia to changes in vital rates

A may represent the single set of focal vital rates, or, following a demographic transition, A may represent the set of post-transition vital rates.  In both cases, one might be interested in the question: “how would population inertia change if the vital rates were just a little bit different.”  A measure for the sensitivity of population inertia to change in the underlying vital rates (aij) of the transition matrix A is needed to answer this question.  
Thus, to develop general formulas for such a sensitivity measure, we begin with equation 10 because this form of the deterministic SER should be most familiar to readers (e.g., presented as an equation for the more familiar M in Caswell, 2001; Keyfitz and Caswell, 2005).  To begin, we apply the product rule to differentiate equation 10 with respect to a single vital rate aij: 
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It becomes apparent that perturbation of a vital rate causes change in the right 
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 and left 
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 eigenvectors.  Conveniently, Caswell (1980, 2001) has developed formulas for sensitivities of these eigenvectors to change in a vital rate aij:  
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where 
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 .  By incorporating Caswell’s formulas (our eqns. 14 and 15) into equation 13, the sensitivity of the deterministic SER to change in a vital rate can be seen as 
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Thus, change in a vital rate causes change in the stable population vector 
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and reproductive value vector 
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, which then leads to change in the SER.  In appendix 2, we prove that equations 14 and 15 can indeed be incorporated into equation 13 to yield equation 16.

Sometimes matrix-level entries are computed from multiple lower-level vital rates.  For example, projection matrix fertilities are the product of fecundity and some component of survival.  The sensitivity of population inertia to a lower-level parameter x can be found using equation 16 together with the chain rule
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Population inertia sensitivities can also be calculated numerically
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Here, 
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 are the measurements of population inertia before and after the instantaneous change 
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 in the vital rate 
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.  Although we have chosen to focus on the sensitivity of population inertia to absolute change in vital rates, the elasticity of population inertia to proportional change in vital rates can easily be calculated from the analytical sensitivity or numerically,
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where 
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 is the proportional change in the vital rate 
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 to SER like they do for the geometric population growth rate (de Kroon et al., 1986).  Still, elasticities do provide useful measures of the effect of relative change in a vital rate on population inertia.
2.4.  General formulas for the sensitivity of population inertia to changes in population structure


Population inertia also depends on the initial population vector 
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, and one may be interested in how changes in initial conditions cause change in population inertia.  Thus, we develop general formulas for this sensitivity as well.  To begin, we apply the quotient rule to differentiate equation 10 with respect to a single entry 
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We note that the ‘initial’ point in time can be defined as the point in time from which the population will be studied forward.  We assume for the rest of this section that 
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In particular, if one examines the special case where 
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Thus, in equation 22, knowledge of only the reproductive value and initial population structure are needed to measure the sensitivity of population inertia to change in a single entry of the initial population structure.  If it is safe to assume that the population structure is initially stable (eqn. 23), then only reproductive value is needed, which is easily computed from A. 


Now we consider perturbations that could affect multiple (st)age classes.  To do this, let 
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where 
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 is the gradient of the SER.  The set of all vectors x for which 
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) are on the positive side (respectively, negative side) of the hyperplane.  Thus, the directional derivative is positive, negative, or zero when u is on the positive side of the hyperplane, the negative side, or in the hyperplane itself, respectively.    


Considering the special case where 
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In this case the SER equals 1.  Therefore, the new value of population inertia after perturbation is > 1, < 1, or = 1 when the directional derivative is > 0, < 0, or = 0, respectively.  If one perturbs only the ith entry of 
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Thus, equation 23 is just a special case of the directional derivative (eqn. 25).  In addition, if 
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, then the distribution of individuals among stage classes does not change following the perturbation (u), so the SER is expected to remain at 1.  This is indeed the case, since 
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3. Applications and examples
3.1.  Age-related dynamics of inertia in an open population

Nearly all studies of population inertia in demography have focused on momentum following change in fertility to the stationary level.  Yet, changes in age-structured vital rates other than fertility are expected to produce population inertia and warrant more study (Li and Tuljapurkar, 1999).  Furthermore, spatial structuring of populations can significantly affect population momentum, and more generally, population inertia (Rogers and Willekens, 1978; Rogers, 1995).  In addition to fertility and survival, dynamics of ‘open’ populations are affected by immigration and emigration.  Here, we provide a short example illustrating how our formulae can be used to examine and compare how population inertia is affected by changes in each of the age- or stage-structured vital rates of an open population.  
It is relatively straightforward to incorporate net immigration into projection models (e.g., Rogers, 1995), but Cooch et al. (2001) present a concise model for incorporating birth, survival, immigration, and emigration vital rates into a single projection matrix:  
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where A is constructed in the traditional pre-breeding census format (Caswell, 2001), 
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 is the average number of births per female in age- or stage-class x, 
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 is the probability of surviving from birth to census in age or stage 1, 
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 is the survival probability from age- or stage-class x to x + 1, 
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 and 
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 are the corresponding probabilities of remaining in the population, conditional on being alive (i.e., 1 – emigration probability, which is called fidelity), and 
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 is the probability that an individual present in the population at time t in age- or stage-class x + 1 was not present in the population at time t - (census time) in age or stage-class x (i.e., the probability of immigrating during the time between censuses from outside the local population).  In the example presented here, we parameterized this model (A) with data based on a female segment of the U.S. population < 50 years old, counted at 5-year intervals, and growing by 1% per year (Table 1).  Data were based on the 1980, U.S. Southwest life tables presented in Rogers (1995), but adjusted to fit our example described above.  We assumed that the population initially had a stable population structure and then applied equations 16, 17, and 18 to calculate the elasticity of population inertia (i.e., the SER) to changes in each of the aforementioned vital rates.      

Of great importance, the sign of the survival, fidelity (
[image: image134.wmf]x
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), and immigration elasticities changed from negative to positive with increasing age while the fecundity elasticity was always negative, indicating that increased fecundity always created inertia leading to smaller population size relative to an otherwise equivalent population in its stable population structure (Fig. 2).  (We note that elasticity values indicate results for an increase in a vital rate, and decreases would produce exactly the opposite result.  We also note that elasticities for survival probabilities and fidelity were identical because of their perfect multiplicative relation in the model).  The effect of changing a vital rate on the population structure and reproductive value (see eqn. 13) varied with age, leading to the patterns in SER elasticities across age (Fig. 2).  Furthermore, changes in fecundity did not have the largest impact on the SER, survival and local population fidelity did.  Thus, while demographers seem to be quite concerned about the effects of the fertility transition on population momentum (see numerous citations in Introduction), perhaps they should also be concerned about the effects of increasing longevity (sensu Guillot, 2005) and changes in migration rates on the SER, a more general measure of population inertia.    
Moreover, population inertia affects abundance in the various age classes, which is known to have profound impacts on the economy (Lee, 2000) and use of natural resources (Liu et al., 1999, 2003).  In addition, population abundance can be a measure of evolutionary fitness for populations regulated by density (Grant and Benton, 2000).  Although our model does not include density-dependence, inertia can occur in these populations.  Thus, our resultant patterns in the elasticity of population inertia to changes in vital rates across age (see Fig. 2) could be very important in each of the aforementioned situations.  From our example, it is quite apparent that change in a given vital rate for age-class 30 would have a very different effect on population inertia, and thus abundance, than would the same change in age-class 5 (Fig. 2).  
Age-related patterns in population inertia sensitivities and elasticities may be a general result of significant importance.  Although this is just one simple example, further study of population inertia sensitivities and elasticities across age and stage are as warranted as the numerous studies of population growth rate sensitivities, elasticities, and selection pressures.  Furthermore, population inertia sensitivities and elasticities could prove to be very useful for studying the dynamics of multi-regional populations (Rogers, 1995), and meta-populations (Hanski and Gilpin, 1997) such as source-sink systems (e.g., Koons, 2005).

3.2.  Life history and the sensitivity of population inertia
The study of patterns in population dynamics across populations and species is important because it aids in the understanding of life history evolution (Harvey and Pagel, 1991; Stearns, 1992), and in the development of demographic policy as well as conservation and management of populations (Bos et al., 1994; Fagan et al., 2001).  Adding to the repertoire of methods used in comparative demography, our formulas allow one to compare the functional relationship between vital rates and population inertia across populations and across species.  Furthermore, the analytical formulae provide a consistent means for comparison that alleviate some pitfalls of numerical simulation.    
To provide a brief example of such an application, we used the bird data with stationary growth (
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) provided in Koons et al. (In Press).  Population models were constructed as in Koons et al. (In Press), and we assumed that each population initially had a stable population structure and stationary growth, hence the SER = 1.  This served as a nice starting point because any perturbation to these equilibrium conditions produces a SER ≠ 1, and it is this ‘change’ in population inertia that we were interested in comparing across species with different life history attributes.  Specifically, we applied equation 16 to the population model (A) for each species and calculated the sensitivity of the SER to changes in fertility, sub-adult survival, and adult survival.

Across the avian life histories, we found that the sensitivity of the SER to changes in fertility increased with the life history generation time (p < 0.01, R2 = 0.94, Fig. 3a) as did sensitivity of the SER to changes in sub-adult survival (p < 0.01, R2 = 0.86, Fig. 3b).  Interestingly, sensitivity of the SER to change in sub-adult survival was negative for species with a generation time < 10 but positive for species that mature later in life and have a longer generation time.  Thus, whether changes in sub-adult survival produced inertia leading to an enlarged or reduced population size relative to an otherwise equivalent population in the stable population structure depended on the duration of the sub-adult stage.  On the other hand, sensitivity of the SER to change in adult survival decreased with life history generation time and was always negative (Fig. 3c).  Although statistical support for the latter relationship was weak (p = 0.12, R2 = 0.27), this brief analysis indicates that the functional relationship between vital rates and population inertia does tend to vary with life history, which is consistent with Koons et al’s more in-depth numerical analysis of population momentum across vertebrate life histories (In Press).  Our equations can be used for analysis following a population’s transition to stationary growth, which would be of interest when studying population momentum, but can also be used to study non-equilibrium and non-stationary conditions as well.  We suggest use of these new tools to examine population inertia dynamics in a wide variety of populations and species.   
3.3.  Effects of initial population structure


In many cases, managers might want to consider how different management strategies focused on population structure could change population inertia in their favor when managing population abundance (MacArthur, 1960; Merrill et al., 2003; Hauser et al., In Review).  Plant and animal release and relocation programs provide managers a variety of ways to directly ‘add’ individuals to specific age or stage classes of a population (e.g., Starling, 1991; Wolf et al., 1996; Ostermann et al., 2001), while harvest, live-trapping, and other removal techniques allow managers to directly decrease abundance in specific age or stage classes (Larkin, 1977; Holt and Talbot, 1978).  All of these management practices could change population inertia.  Thus, we provide an example that illustrates how population inertia is affected by perturbations that add or remove individuals from specific age classes of a population.  We use the following matrix A, which describes the mean fertility and survival rates of the lesser snow goose (Chen caerulescens) population at La Perouse Bay, Manitoba from 1973 to 1990 (Cooch et al., 2001). 
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In A, fertilities are represented on the top row and survival probabilities are on the sub-diagonal and bottom-right corner of the matrix.  The 1st age class represents young and all others represent adult age classes.  

To begin, we calculated the left 
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eigenvectors of A.  To simplify our scenario, we assumed that population structure was initially stable (i.e., 
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, which allowed us to use equations 25 and 26 to easily address our scenario.  In addition, the normalized right and left eigenvectors are still eigenvectors of A, and the condition 
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Next, we used the directional derivative to measure the sensitivity of population inertia to a variety of perturbations to initial population structure (Table 2).  It is readily seen that if only the ith entry of initial population structure is perturbed, then the direction SER moves away from 1 is dictated by the sign of the ith entry of 
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.  For example, a unit increase in the 1st age class decreases population inertia (SER < 1), a unit increase in an older adult age class increases population inertia (SER > 1), and unit decreases produce opposite results (Table 2).  Furthermore, perturbations to multiple age classes produce intermediate, but perhaps more realistic results.  Perturbations equal to the stable age distribution (
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 ) do not change population inertia at all (SER still = 1; Table 2).  

Compared to the stable age distribution of A, removing young (e.g., through clutch removal), releasing adults, or both, would allow a goose manager to quickly increase population inertia because each action shifts age structure towards reproducing adults.  On the other hand, releasing young, removing adults (via harvest or live trapping), or both, would allow the manager to quickly decrease population inertia because these practices shift age structure towards young.  However, it is important to remember that these results pertain only to the effects of directly changing population structure, not the effects of perturbing vital rates, which are presented above.

In general, the influence of population structure on eventual population size is of great importance in conservation biology and management (Keyfitz and Caswell, 2005).  When reintroducing species into previously habited areas, it would be most effective to introduce individuals of an age and reproductive value that would maximize the SER (see Koons, 2005).  Similarly, invasion of non-native plants and animals can lead to substantial economic and environmental damage.  Management aimed towards minimizing the SER would be of interest in the management of invasive species (Keyfitz and Caswell, 2005; Koons et al., 2006) and our formulae could help refine management agendas in these situations.
4.  Closing Remarks
Population inertia is a measure related to population size rather than growth rate, and unlike the growth rate, population size is very responsive to initial population structure (Tuljapurkar and Lee, 1997).  Direct or indirect changes in population structure create transient dynamics having an effect on both short- and long-term size, which is an issue that is best addressed with formal perturbation measures like sensitivities.  Sensitivities have been developed for population size (Fox and Gurevitch, 2000; Yearsley, 2004).  However, we have drawn upon theory developed by Caswell (1980) to derive a suite of sensitivity formulae for the SER that explicitly show that population inertia depends on both reproductive value and population structure (Tuljapurkar and Lee, 1997; eqn. 13).  These formulae differ from those for population size itself because the SER is a ratio measuring the inertial effect of population structure and transient dynamics on long-term population size relative to an otherwise equivalent population in its asymptotically stable population structure.  
Most often, demographers and population biologists refer to asymptotic measures of population dynamics (e.g., r, 
[image: image150.wmf] 1

l

, T) making the SER especially useful because it provides a direct comparison of the dynamics resulting from changes in the vital rates and population structure to the stable population dynamics (Fig. 1b).  Thus, the SER sensitivities can readily be used to examine the consequences of assuming a stable population structure, which is common practice.  Furthermore, we have shown that SER sensitivities could be used to address a large array of new questions in human demography, population biology, evolution, conservation, and natural resource management as well as many other arenas.

Formulas relating change in underlying vital rates to change in the asymptotic population growth rate (e.g., Caswell 1978), transient dynamics (Fox and Gurevitch, 2000; Caswell, 2001; Yearsley, 2004; Koons et al. 2005), and inertia in long-term population size (here) are all needed to better understand population dynamics from evolutionary and applied points of view.  We encourage further exploration of the behavior of population inertia in nature, as well as theoretical work on the maximization, minimization, and control of population inertia (e.g., Koons, 2005; Hauser et al., In Review).     
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Here, we establish equation 7, namely,
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and the equality follows.  For the fourth equality, we have used the fact that for i > h, 
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Appendix 2.  

We discuss in detail some technical issues regarding our derivation of the population inertia sensitivity formula presented in equation 16 of the text.  To begin, fix a pair (i, j) and view the matrix A as a function of 
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Here, the prime symbol (
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) denotes derivative with respect to t and the equations in A3 and A4 are understood to be identities, that is, valid for all 
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We first establish a general result. 
Lemma: Let x and y be n-dimensional real vector functions on an open real interval 
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Remarks: In view of A1 and A4, we can use 
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Table 1.  Values of survival probability (S), local population fidelity (
[image: image238.wmf]h

), immigration probability (I) and fecundity (m, female births per female between and including age x and x + 4) for the female segment of the U.S. Southwest population < 50 years old, counted at 5-year intervals, and growing by 1 % per year.  

	
	Vital Ratesa

	Age x
	S
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	I
	m

	
	
	
	
	

	0
	0.938
	0.956
	-
	0

	5
	0.971
	0.973
	0.087
	0.0008

	10
	0.977
	0.979
	0.076
	0.0978

	15
	0.968
	0.974
	0.102
	0.2880

	20
	0.956
	0.963
	0.144
	0.3698

	25
	0.955
	0.962
	0.144
	0.2760

	30
	0.962
	0.970
	0.104
	0.1313

	35
	0.969
	0.978
	0.065
	0.0389

	40
	0.970
	0.985
	0.042
	0.0067

	45
	0.966
	0.988
	0.030
	0.0004


a –  Data were based on life tables presented in Rogers (1995), but adjusted to fit our example described in the text.
Table 2.  The sensitivity of population inertia to unit changes u in the initial population structure of the lesser snow goose population at La Perouse Bay, Manitoba, indicated by the directional derivative 
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, and the effect of the perturbation on the SER. We used the normalized left eigenvector 
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, each rounded to the second decimal.   
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SER

D

u

w


	Value of SER after perturbation

	[1 0 0 0 0]T
	-0.30
	< 1

	[0 0 1 0 0]T
	0.06
	> 1

	[0 0 0 0 1]T
	0.17
	> 1

	[-1 0 0 0 0]T
	0.30
	> 1

	[0 0 -1 0 0]T
	-0.06
	< 1

	[0 0 0 0 -1]T
	-0.17
	< 1

	[0.2 0.2 0.2 0.2 0.2]T
	-0.003
	< 1

	[-0.2 -0.2 -0.2 -0.2 -0.2]T
	0.003
	> 1

	[0.23 0.17 0.14 0.10 0.36]T b
	0
	1


a – Rounded to the second decimal

b – The stable age distribution
Figure 1.  Graphical examples of a) Keyfitz’s “population momentum” showing increased population size caused by an unstable population structure (solid line) relative to the size of an otherwise equivalent population growing according to its stable population structure and a stationary growth rate (dashed line), and b) “population inertia”, which is essentially the same phenomenon, but not restricted in definition to populations that eventually attain the stationary population growth rate (e.g., a growing population is shown here).  Measures of population inertia are given in section 2.2.  
Figure 2.  The elasticity of the Stable Equivalent Ratio (SER) to changes in survival probability, local population fidelity, immigration probability, and fecundity across age categories for the U.S. Southwest population example (section 3.1).

Figure 3.  The relationship between life history generation time and the sensitivity of the Stable Equivalent Ratio (SER) to changes in a) fertility, b) sub-adult survival, and c) adult survival for initially stationary populations of selected avian species.  The scale of the y-axes differs among graphs a, b, and c.  (Life history data comes from Koons et al. In Press).  
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Time


0


5


10


15


20


25


30


Population Size


80


100


120


140


160


180


200


220


240


260


280


b)


Time


0


5


10


15


20


25


30


Population Size


50


100


150


200


250


300


350


400


450


"Population Momentum"


"Population Inertia"




a)  Time

0 5 10 15 20 25 30

Population Size

80

100

120

140

160

180

200

220

240

260

280

b)

Time

0 5 10 15 20 25 30

Population Size

50

100

150

200

250

300

350

400

450

"Population Momentum"

"Population Inertia"


[image: image245.emf]Age Category


0


5


10


15


20


25


30


35


40


45


Elasticity of SER to 


change in vital rate


-0.5


-0.4


-0.3


-0.2


-0.1


0.0


0.1


0.2


0.3


Survival


Fidelity


Immigration


Fecundity




Age Category

0 5 10 15 20 25 30 35 40 45

Elasticity of SER to 

change in vital rate

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Survival

Fidelity

Immigration

Fecundity


[image: image246.wmf]a)

Generation Time

0

5

10

15

20

25

30

35

Sensitivity of SER 

to change in fertility

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

b)

Generation Time

0

5

10

15

20

25

30

35

Sensitivity of SER 

to change in sub-adult survival

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

c)

Generation Time

0

5

10

15

20

25

30

35

Sensitivity of SER

to change in adult survival

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 
_1201937185.unknown

_1201952052.unknown

_1201952532.unknown

_1201959124.unknown

_1202542149.unknown

_1202542291.unknown

_1202542395.unknown

_1202543723.unknown

_1202543789.unknown

_1202543876.unknown

_1202543536.unknown

_1202542365.unknown

_1202542181.unknown

_1202542219.unknown

_1202539653.unknown

_1202540199.unknown

_1202542022.unknown

_1201961991.unknown

_1201962844.unknown

_1201959207.unknown

_1201958672.unknown

_1201953601.unknown

_1201958546.unknown

_1201953641.unknown

_1201952553.unknown

_1201952465.unknown

_1201952513.unknown

_1201952522.unknown

_1201952500.unknown

_1201952433.unknown

_1201952445.unknown

_1201952379.unknown

_1201940346.unknown

_1201941623.unknown

_1201943511.unknown

_1201944800.unknown

_1201944952.unknown

_1201944456.unknown

_1201943338.unknown

_1201940768.unknown

_1201941084.unknown

_1201940597.unknown

_1201939404.unknown

_1201940022.unknown

_1201940238.unknown

_1201937294.unknown

_1201937465.unknown

_1201938966.unknown

_1201937265.unknown

_1176367474.unknown

_1201935744.unknown

_1201936719.unknown

_1201937040.unknown

_1201935841.unknown

_1201936545.unknown

_1201936601.unknown

_1201936333.unknown

_1201935779.unknown

_1197966315.unknown

_1197967973.unknown

_1198053109.unknown

_1201934751.unknown

_1201935669.unknown

_1198056055.unknown

_1198575338.unknown

_1198575448.unknown

_1198678025.unknown

_1199107809.unknown

_1201934659.unknown

_1199107278.unknown

_1198578788.unknown

_1198575422.unknown

_1198482785.unknown

_1198483164.unknown

_1198573468.unknown

_1198482843.unknown

_1198056255.unknown

_1198056454.unknown

_1198056615.unknown

_1198056777.unknown

_1198056576.unknown

_1198056298.unknown

_1198056138.unknown

_1198054431.unknown

_1198054993.unknown

_1198055304.unknown

_1198055320.unknown

_1198055120.unknown

_1198054686.unknown

_1198054878.unknown

_1198054514.unknown

_1198053607.unknown

_1198054290.unknown

_1198054319.unknown

_1198054275.unknown

_1198053432.unknown

_1198053530.unknown

_1198053293.unknown

_1198050851.unknown

_1198051990.unknown

_1198052935.unknown

_1198053014.unknown

_1198053091.unknown

_1198052978.unknown

_1198052161.unknown

_1198052891.unknown

_1198052732.unknown

_1198052014.unknown

_1198051634.unknown

_1198051816.unknown

_1198051911.unknown

_1198051714.unknown

_1198051542.unknown

_1198051576.unknown

_1198051522.unknown

_1198048927.unknown

_1198049375.unknown

_1198049705.unknown

_1198050792.unknown

_1198049526.unknown

_1198049056.unknown

_1198049097.unknown

_1198049009.unknown

_1197968020.unknown

_1197968245.unknown

_1197972961.unknown

_1198048286.unknown

_1197968144.unknown

_1197968008.unknown

_1197967526.unknown

_1197967854.unknown

_1197967940.unknown

_1197967836.unknown

_1197967484.unknown

_1197967509.unknown

_1197966373.unknown

_1197881761.unknown

_1197965895.unknown

_1197966106.unknown

_1197966116.unknown

_1197966068.unknown

_1197899020.unknown

_1197903581.unknown

_1197893557.unknown

_1197893981.unknown

_1190637078.unknown

_1197879822.unknown

_1176367523.unknown

_1171352763.unknown

_1176367442.unknown

_1176367465.unknown

_1171445884.unknown

_1176364150.unknown

_1176364317.unknown

_1176365902.unknown

_1176364244.unknown

_1175510045.unknown

_1175510454.unknown

_1175510780.unknown

_1175510890.unknown

_1175510673.unknown

_1175510277.unknown

_1171455665.unknown

_1171552454.unknown

_1171553203.unknown

_1171455645.unknown

_1171357292.unknown

_1171357569.unknown

_1171433810.unknown

_1171357407.unknown

_1171357271.unknown

_1171352833.unknown

_1171353430.unknown

_1168888832.unknown

_1171286800.unknown

_1171292289.unknown

_1171292589.unknown

_1171288108.unknown

_1168932199.unknown

_1171090908.unknown

_1168931604.unknown

_1168931631.unknown

_1168887912.unknown

_1168888737.unknown

_1168849732.unknown

_1168852616.unknown

_1123058851.unknown

_1111306134.unknown

